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ABSTRACT 
 
 This report summarizes the results from a project aimed at investigating the 
interrelationships of crustal deformation and pore fluid pressures. The project had three main 
goals: (1) to develop an algorithm for simulating crustal deformation and fluid flow processes, 
(2) to implement and validate numerical models based on selected benchmark hydrogeophysical 
problems related to specified boundary conditions, and (3) to use the numerical simulations to 
explore poroelastic processes in realistic geologic domains.  The results of the project should be 
useful for reducing seismic hazard by increasing our understanding of fluid pressures in 
postseismic deformation and by providing a coupled crustal deformation and pore pressure 
propagation modeling tool available to others for use in exploring the poroelastic response of 
brittle crustal rocks and sedimentary basins to strong earthquakes. The codes developed as part 
of this grant, referred to herein as PFLOW, are described in this report.  PFLOW is a 3-D time-
dependent pore-pressure diffusion model developed to investigate the response of pore fluids to 
the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given 
crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses 
Skempton's coefficient to calculate resulting initial change in fluid pressure (initial condition). 
Pore-pressure diffusion can be tracked over time in a user-defined model space with user-
prescribed Neumann or Dirichlet boundary conditions and with spatially variable values of 
permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and 
explicit or implicit first order, or implicit second order, finite difference discretization in time. 
PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb 
(Toda et al., 2005) or 3D-DEF (Gomberg and Ellis, 1993). The code is useful for investigating, 
to first-order, the evolution of pore pressure changes induced by changes in Coulomb stress and 
their possible relation to water-level changes in wells or changes in stream discharge. We offer it 
to users as a possible research and educational tool, for non-commercial use. 
 
 
 
INTRODUCTION 

Field evidence suggests a causal relationship between hydrologic changes and 
earthquakes.  For instance, pore-pressure increases due to deep-well injection, increased stream 
discharge, groundwater recharge, and the filling of reservoirs have been linked to earthquake 
triggering (e.g., Costain et al., 1987). Conversely, moderate to large earthquakes have generated 
significant hydrologic changes, such as fluctuations of stream discharge and groundwater levels 
(e.g., Muir-Wood and King, 1993; Roeloffs, 1998), variations in groundwater geochemistry (e.g., 
Claessen et al., 2004), and soil liquefaction (Tuttle et al., 2002). Several mechanisms have been 
proposed on the origin and evolution of hydrologic changes associated with strong earthquakes. 
Sibson (1994) examined how crustal fluids can be drawn into fractured rocks as tectonic stresses 
or strains increase, and then “pumped out” when the strain energy is released during an 
earthquake.  Several case studies provide field evidence for hydrologic changes that are 
consistent with measured coseismic strains (e.g., Muir-Wood and King, 1993; Quilty and 
Roeloffs, 1997). Others hypothesized that tectonically induced fracturing, faulting, or unclogging 



can change the permeability in the shallow crust, thus initiating changes in streamflow, 
groundwater discharge or water levels (Manga, 2001, Rojstaczer and Wolf, 1992; Sato et al., 
2000; Brodsky et al., 2003; Wang et al., 2004).  Still others invoke sediment compaction or 
consolidation from strong ground shaking or dynamic strain as a mechanism for overpressure 
development in alluvial sediments (Wang et al., 2001, Wolf et al., 2006). Coseismic and 
postseismic events such as streamflow increase, overpressure development, liquefaction, and 
aftershocks can be sustained from days to years, indicating that these time-dependent changes are 
influenced strongly by rates of overpressure relaxation and fluid flow.  Although the interplay 
between seismicity and hydrologic phenomena are intriguing, few tools exist to explore coupled 
media deformation and hydrologic processes operating in the earth’s crust.  In this project, we 
present a 3-D time-dependent pore pressure diffusion code developed to investigate the response 
of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous 
geologic media.  

 
POROELASTICITY 
 
 Biot (1941), Wang (2000), and Showalter (2000), among others, summarized the physical 
and mathematical models for poroelastic problems.  A system of partial differential and algebraic 
equations can be used to describe the relationships among four basic variables: stress (σ), strain 
(ε), pore pressure (P), and increment of fluid content (ξ) in deformed porous media.  First, the 
force equilibrium equations can be written as  

      (1) 
where σji is the total stress in the j-direction acting on the surface with normal in the i-direction 
and Fi is a body force per unit bulk volume in the i-direction.  The stress σ is related to the strain, 
the pressure, and the poroelastic moduli by 
 

     (2) 
 
where G is the shear modulus, v is the drained Poisson’s ratio, α is the Biot-Willis coefficient, 
and δij is the Kronecker delta. The strain components in (2) can be evaluated in terms of 
displacement derivatives 
 

 .    (3) 
 
Substituting equation (2) into (1) and replacing strain terms ε by displacements u, the general 
force equilibrium equation (1) can be expressed as 
 

  .   (4) 

 



The governing mechanical equilibrium and fluid flow equations contain the displacement and 
fluid pressure as the primary variables. 
 The continuity equation yields the following equation that describes the diffusion of 
induced excess pore pressure, 
 

     (5) 

 
where Ss is the hydrogeologic specific storage of  rock, k is the permeability, µ is the viscosity, 
and Q is a fluid source term, as induced by seismic faulting. In heterogeneous media, the 
hydrologic properties k and µ  are allowed to have spatial dependence. According to equation 
(5), the net pressure change depends on the magnitude of fluid source term (Q), the viscosity (µ), 
and the permeability (k) and specific storage capacity (Ss) of the rocks between the faulting zone 
and a site of interest.  The increment of fluid volume (ξ) released per unit bulk volume can be 
evaluated byξ = Ss P. Equation (5) can thus be rewritten in terms of ξ, 
 

 .     (6) 
 
Furthermore, the increment of fluid volume ξ is related to stress and pore pressure as 
 

,     (7) 
 
 
where 1/H is the poroelastic expansion coefficient, 1/R is the unconstrained specific storage 
coefficient , K is the bulk modulus, and B is Skempton’s coefficient, which varies between 0 and 
1. Substitution of (7) into (6) yields an equation that relates mean stress and pore pressure 
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If displacement is chosen as the mechanical variable instead of stress, equation (8) can be re-
written as 
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Here Sσ (defined as Sσ = α/KB) is the poroelastic storage coefficient. Equations (4) and (9) 
couple the standard theory of (steady) linear elasticity and Darcy’s law (by the addition of the 
pore pressure field) and form the equations of quasi-static poroelasticity. The solution of this 
system of equations can be approximated by numerical methods, such as finite-element or 
boundary-element methods (Smith & Griffiths, 1988; Masterlark & Wang, 2000).   



 
 
PFLOW MODELING SOFTWARE 
 
 Equations (4) and (9) describe the interplay among displacement and pressure as they 
evolve through time after a fault rupture. Numerical solutions to these coupled equations, 
however, are limited in the published literature. If the dilatation is constant in time (that is 
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PFlow offers users a tool with which they can explore, to first-order, the effects of changes in 
Coulomb stress transfer on pore pressure over time through a one-way coupled model.  The 
Coulomb failure stress change, ΔCFS, initiated by fault rupture is 
 

€ 

ΔCFS = Δσ s −m Δσ n −ΔP( )      (11) 
 
 
where Δσs is the change in shear stress along a fault, m is the friction coefficient, ΔP is the 
change in pore pressure, and Δσn is the change in normal stress (positive if the fault is 
unclamped).  In areas where ΔCFS is positive, failure is encouraged, and where negative, failure 
is discouraged.  In elastic deformation, stress (σ) is related to strain (ε) by Young’s Modulus (E) 
as σ = Eε.  The fractional volume change ΔV/V can be described as 
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ΔV
V
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where υ is Poisson’s ratio and β is bulk compressibility. Coulomb strain (dilatation) calculated 
from the stress change provides the initial hydrologic disturbance, or induced excess pore 
pressure, which is then allowed to dissipate through a user-defined model space over time.  In the 
one-way coupling, the pore pressure change induced by a stress change is calculated using 
Skempton’s coefficient, B, (Skempton, 1954): 
 

€ 

ΔP = BΔσ        (13) 
 
The propagation of induced excess pore pressures or heads, h (P = ρgh) can then be calculated 
using the well-known flow equation 
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where Kx,Ky, and Kz, are hydraulic conductivities (m/day), h is hydraulic head (m), and Ss is the 
hydrogeologic specific storage (m-1).  Thus the net pore pressure change over time depends on 
the volumetric strain produced from coseismic energy release and on the hydraulic conductivity 
of rocks between the rupture zone and a site of interest. 
 PFlow can be used to approximate solutions of Equation (10). Operationally, PFLOW 
codes utilize Matlab™ functions and a series of input files. Figure 1 contains a list of the 
functions that form the PFLOW program and a brief description of each file’s functionality. The 
README file explains how to use PFlow.m to calculate the pressure (and fluid flow) induced by 
a strain field (deformation) and how to use visP.m in order to visualize the results. PFlow.m is a 
driver script for a finite-element code that performs the actual calculations. PFlow.m, in turn, 
relies on several Matlab™ functions (residing in Matlab m-files listed in Figure 1) and input files 
that provide boundary conditions, dilatation from which initial pressures are calculated, and 
information about the model space. Users can specify boundary conditions as either Neumann 
(no flow) or Dirichlet (drained or specified pressure) on the top, bottom, and sides of the model. 
In addition, users can specify hydrologic conductivity in three dimensions, either constant along 
a given axis direction, or variable. This flexibility is instructive for testing how rock 
permeabilities affect the dissipation of pore pressure and fluid flux over time.  The script visP.m 
performs some basic post-processing and visualization of results and may serve as a basis for a 
program that provides additional post-processing. The script is easily modified to allow users the 
ability to examine calculation results in different regions of the model space and at specific time 
steps.  Initial conditions for the calculations can be obtained from a deformation modeling 
program such as Coulomb (Toda et al., 2005) or 3D-DEF (Gomberg and Ellis, 1994). These 
programs calculate dilatational strain using a specified fault rupture model.  The output values of 
strain become the initial conditions for pressure in the PFlow model. 

 
 Boundary and initial conditions 
Equation (10) is posed on Ω × (0,T), where Ω ⊂ R3 is a bounded spatial domain (in this case a 
cuboid) and (0,T) is the time interval of interest. This equation must be supplemented by initial 
and boundary conditions. Assume that Γ the boundary of Ω, is divided into two disjoint parts Γd 
and Γf along which we have drained and flow boundary conditions, respectively. With these 
conventions we allow the following combinations of boundary conditions 
 

P = 0 on Γd        (15) 
 

   on Γf   .           (16) 

 
Finally we have the initial conditions 
 

  on Ω       at t = 0     (17) 
   
 Numerical solutions  
In PFlow, we numerically approximate the solution of Equation (10), subject to boundary 
conditions (eqns. 15 and 16) and initial condition (eqn. 17) using MATLAB™ code. Our 
programs employ the finite element method for first-order or second-order spatial discretization 



(discretization of the spatial derivative) and explicit or implicit first-order, or implicit second 
order, finite difference discretization in time (discretization of the time derivative). After 
temporal discretization, equation (10) becomes 
 

  (18) 

 
In the above semi-discrete (discrete in time, continuous in space) formulation, the superscript n 
denotes the discrete time level at which the function is evaluated and Δt is the time step. The 
parameter θ determines the discretization type (for θ = 0, this yields Euler’s method, explicit 
first-order; for θ = ½, the Crank-Nicolson scheme, implicit second-order; and for θ = 1, the 
backward Euler’s method, implicit first-order). After spatial (finite element) discretization, the 
above becomes a system of linear algebraic equations, with sparse matrices. Once the initial 
pressure P0 of seismic faulting is obtained from a crustal deformation modeling code, such as 
3D-DEF (Gomberg and Ellis, 1993) or Coulomb (Toda et al., 2005), the system can be solved for 
Pn for 1 ≤ n.  At each time step, the system is solved using a sparse direct solver, a built-in 
function of Matlab™.   
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Figure 1. Description of files constituting the PFLOW suite of programs. (Copyright(©) 2009 by 
A. J. Meir (ajm@math.auburn.edu), Department of Mathematics and Statistics, Auburn 
University; All Rights Reserved.) 
 

README.txt Provides a overview of programs and instructions on how to use PFLOW 

and visP.m  

PFlow.m* Main driver script for the PFLOW suite of programs. Calculates pressure 

and resulting flow induced by Coulomb strain 

VisP.m Post-processing script that allows users to visualize results at specified time 

steps in the model space  

Conductivity.txt Example of hydraulic conductivity input file 

Strain.txt Example of dilatational strain input file 

assemble.m Assembly routine 

boundaryCond.m Calculates boundary conditions (needed for Dirichlet conditions; not 

currently used). Currently a zero vector is created directly in setBC.m 

errors.m Computes errors when exact solution is known for testing and diagnostics 

exact.m Calculates exact solution and its derivatives for error computation 

initialCond.m Computes initial condition 

quadpts27.m Gauss quadrature information for a 27-point Gauss quadrature rule on 

hexahedra 

quadpts8.m Gauss quadrature information on an 8-point Gauss quadrature rule on 

hexahedra 



readIC.m Reads initial dilatations from a file 

readK.m Reads hydraulic conductivities from a file 

rhs.m Calculates right-hand side 

setBC.m Sets boundary conditions, modifies matrices and right-hand side 

accordingly 

setgrid3D.m Generates a simple 3-D grid, with uniform hexahedral mesh for linear or 

quadratic elements 

trilinear.m Constructs trilinear basis functions on hexahedra 

triquadratic.m Constructs triquadratic basis functions on hexahedra 

*All programs designated by .m are Matlab™-based programs. 

 


